Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.414
Filtrar
1.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622750

RESUMO

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Assuntos
Culex , Culicidae , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Inseticidas/farmacologia , Íntrons/genética , Mosquitos Vetores/genética , Culex/genética , Mutação , Canais de Sódio Disparados por Voltagem/genética , Resistência a Inseticidas/genética
2.
Front Vet Sci ; 11: 1352236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634104

RESUMO

Animal and human dirofilariosis is a vector-borne zoonotic disease, being one of the most important diseases in Europe. In Serbia, there are extensive studies reporting the presence of Dirofilaria immitis and D. repens, mainly in the north of the country, where the human population is concentrated and where there is a presence of culicid mosquitoes that transmit the disease. Ecological niche modeling (ENM) has proven to be a very good tool to predict the appearance of parasitosis in very diverse areas, with distant orography and climatologies at a local, continental, and global level. Taking these factors into account, the objective of this study was to develop an environmental model for Serbia that reflects the suitability of the ecological niche for the risk of infection with Dirofilaria spp. with which the predictive power of existing studies is improved. A wide set of variables related to the transmission of the parasite were used. The potential number of generations of D. immitis and the ecological niche modeling method (ENM) were used to estimate the potential distribution of suitable habitats for Culex pipiens. The highest probability of infection risk was located in the north of the country, and the lowest in the southern regions, where there is more orographic relief and less human activity. The model was corroborated with the location of D. immitis-infected dogs, with 89.28% of the country having a high probability of infection. In addition, it was observed that the percentage of territory with optimal habitat for Culex spp. will increase significantly between now and 2080. This new model can be used as a tool in the control and prevention of heartworm disease in Serbia, due to its high predictive power, and will serve to alert veterinary and health personnel of the presence of the disease in the animal and human population, respectively.

3.
Parasit Vectors ; 17(1): 168, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566167

RESUMO

BACKGROUND: Mosquitoes inhabiting urban green spaces and cemeteries in Europe represent a crucial facet of public health concern and contribute to the ecological balance. As urbanization intensifies, these areas increasingly serve as vital habitats for various mosquito species, fostering breeding grounds and increasing the risk of disease transmission. METHODS: A study was conducted in the three main cities (inland, coastal, and estuarine) of the Basque Country, northern Spain, to investigate the species composition, abundance, dynamic populations, larval habitats, and host preferences of mosquitoes in urban green spaces and cemeteries. CDC traps and dipping were used to collect mosquitoes for 2 years (2019-2020). RESULTS: A total of 21 mosquito species were identified, with Culex pipiens s.l. being the most abundant and widespread. The three ecological forms of Cx. pipiens were found, and Cx. pipiens pipiens was the most common in both green areas and cemeteries. Morphological identification together with molecular tools identified 65 COI sequences with high homology. The highest species richness was found in the inland city, followed by the coastal city and the estuarine city. Mosquito abundance was significantly higher in green areas compared to cemeteries and in the coastal and estuarine cities compared to the inland city. The investigation of larval breeding sites highlighted the dominance of Cx. pipiens s.l., particularly in semi-artificial ponds, diverse water-holding containers (tyres and buckets) and drainage systems in green areas; in cemeteries, most of the larvae were found in flowerpots and funerary urns. Seasonal activity exhibited variable peaks in mosquito abundance in the different cities, with a notable increase in July or August. Additionally, blood meal analysis revealed that Cx. pipiens s.l. fed on several common urban avian species. CONCLUSIONS: Studies on mosquitoes are essential to understand their role in disease transmission and to design targeted and sustainable management strategies to mitigate the associated risks.


Assuntos
Culex , Culicidae , Animais , Espanha , Parques Recreativos , Cemitérios , Culex/anatomia & histologia , Larva
4.
Acta Trop ; : 107205, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579960

RESUMO

Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38648543

RESUMO

Background: West Nile virus (WNV), Everglades virus (EVEV), and five species of Orthobunyavirus were isolated from mosquitoes collected in the Everglades in 2016-2017. Prior studies of blood meals of mosquitoes in southern Florida have related findings to acquisition and transmission of EVEV, St. Louis encephalitis virus, and WNV, but not the Orthobunyavirus viruses associated with the subgenus Melanoconion of the genus Culex. Materials and Methods: In the present study, blood-fed mosquitoes were collected in the Everglades in 2016, 2017, 2021, and 2022, and from an industrial site in Naples, FL in 2017. Blood meals were identified to host species by PCR assays using mitochondrial cytochrome b gene. Results: Blood meals were identified from Anopheles crucians complex and 11 mosquito species captured in the Florida Everglades and from 3 species collected from an industrial site. The largest numbers of blood-fed specimens were from Culex nigripalpus, Culex erraticus, Culex cedecei, and Aedes taeniorhynchus. Cx. erraticus fed on mammals, birds, and reptiles, particularly American alligator. This mosquito species could transmit WNV to American alligator in the wild. Cx. nigripalpus acquired blood meals primarily from birds and mammals and frequently fed on medium-sized mammals and white-tailed deer. Water and wading birds were the primary avian hosts for Cx. nigripalpus and Cx. erraticus in the Everglades. Wading birds are susceptible to WNV and could serve as reservoir hosts. Cx. cedecei fed on five species of rodents, particularly black and hispid cotton rats. EVEV and three different species of Orthobunyavirus have been isolated from the hispid cotton rat and Cx. cedecei in the Everglades. Cx. cedecei is likely acquiring and transmitting these viruses among hispid cotton rats and other rodents. The marsh rabbit was a frequent host for An. crucians complex. An. crucians complex, and other species could acquire Tensaw virus from rabbits. Conclusions: Our study contributes to a better understanding of the host and viral associations of mosquito species in southwestern Florida.

6.
Acta Parasitol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592372

RESUMO

PURPOSE: Mosquitoes are important vectors of pathogens that can affect humans and animals. Culex tritaeniorhynchus is an important vector of arboviruses such as Japanese encephalitis virus, West Nile virus among various human and animal communities. These diseases are of major public health concern and can have huge economic and health burdens in prevalent countries. Although populations of this important mosquito species have been detected in the Mediterranean and Aegean regions of Türkiye; little is known about its population structure. Our study is to examine the population genetics and genetic composition of Cx. tritaeniorhynchus mosquitoes collected from several localities using cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 5 genes (ND5). This is the first extensive study of Cx. tritaeniorhynchus in the mainland Türkiye with sampling spanning many of provinces. METHODS: In this study, DNA extraction, amplification of mitochondrial COI and ND5 genes and population genetic analyses were performed on ten geographic populations of Culex tritaeniorhynchus in the Aegean and Mediterranean region of Türkiye. RESULTS: Between 2019 and 2020, 96 samples were collected from 10 geographic populations in the Aegean and Mediterranean regions; they were molecularly analyzed and 139 sequences (50 sequence for COI and 89 sequence for ND5) were used to determine the population structure and genetic diversity. For ND5 gene region, the samples produced 24 haplotypes derived from 15 variable sites and for COI gene region, 43 haplotypes were derived from 17 variable sites. The haplotype for both gene regions was higher than nucleotide diversity. Haplotype phylogeny revealed two groups present in all populations. AMOVA test results show that the geographical populations were the same for all gene regions. Results suggest that Cx. tritaeniorhynchus is a native population in Türkiye, the species is progressing towards speciation and there is no genetic differentiation between provinces and regions. CONCLUSION: This study provides useful information on the molecular identifcation and genetic diversity of Cx. tritaeniorhynchus; these results are important to improve mosquito control programs.

7.
Pestic Biochem Physiol ; 200: 105809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582581

RESUMO

Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 µg/mL and LC90 of 15.37 µg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Óleos Voláteis , Piper , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Larva , Acetilcolinesterase , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/química , Compostos de Sulfidrila/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta
8.
Artigo em Chinês | MEDLINE | ID: mdl-38604685

RESUMO

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.


Assuntos
Culex , Culicidae , Microbiota , Humanos , Animais , RNA Ribossômico 16S/genética , Culex/genética , Culicidae/genética , Microbiota/genética
9.
J Am Mosq Control Assoc ; 40(1): 78-80, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427587

RESUMO

Over the course of three years, 200 ft to 0.75 mi (60 m to 1.2 km) sections of 3 larger (>6 ft [1.8 m] diam) belowground storm sewer conveyance pipes in the northwestern Chicago suburbs were inspected for the presence of adult mosquitoes. Culex mosquitoes were by far the most common (555 of 556 [99.8%] total mosquitoes) collected within pipes during all four meteorological seasons (i.e. during months of October, January, May, August). These observations support prior work elsewhere, suggesting storm sewer pipes are consistent sites of refuge for adult Culex mosquitoes.


Assuntos
Culex , Culicidae , Animais , Chicago , Estações do Ano
10.
J Med Entomol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430931

RESUMO

The New Jersey Light Trap has been among the earliest trap models used for mosquito surveillance in the United States. This trap was modernized in the 1950s to the miniature CDC light trap, with the addition of CO2 following soon after. The incandescent light has the tendency to attract nontarget insects, as well as losing a substantial portion of their energy as heat. Few studies have delineated whether heat or light in isolation make a difference in field collections using the former traps within the United States. Our study focused on isolating heat and light variables by using incandescent bulbs, light emitting diode (LED) bulbs, and electric heating patches affixed to a base model CO2 trap as designed at the Salt Lake City Mosquito Abatement District. Sites were selected in the urban and suburban foothills and canyons of the Wasatch Mountain front, industrial areas near the Salt Lake City International Airport, and rural wetlands in the marshes outlying the Great Salt Lake. Five traps were replicated within each sector during the summer and fall summer seasons. Collections were composed of Aedes dorsalis (Meigen), Culex pipiens L., Culex tarsalis Coquillett, and Culiseta inornata (Williston). Composition changes were a result of seasonal, rather than spatial, shifts. The results showed that LED light traps depressed collections of key species. Otherwise, there were negligible differences in collections among incandescent, heat film, and base model traps. In the Intermountain West, the miniature CDC trap is reliable enough to make programmatic decisions even if light usage varies by district.

11.
FEMS Microbes ; 5: xtae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450098

RESUMO

Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.

12.
Insects ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535388

RESUMO

Mosquitoes transmit a range of pathogens, causing devastating effects on human health. Population genetic control strategies have been developed and successfully used for several mosquito species. The most important step in identifying potential targets for mosquito control is the understanding of gene function. RNA interference (RNAi) is a powerful tool for gene silencing which has been widely used to study gene function in insects via knockdown of expression. The success of RNAi in insects depends on the efficient delivery of dsRNA into the cells, with microinjections being the most commonly used to study mosquito gene function. However, microinjections in the pupal stage lead to significant mortality in Aedes and Culex species, and few studies have performed microinjections in Culicinae pupae. Advanced techniques, such as CRISPR/Cas9 knockout, require establishing individual mosquito lines for each gene studied, and maintaining such lines may be limited by the insect-rearing capacity of a laboratory. Moreover, at times gene knockout during early development (embryo stage) has a deleterious effect on mosquito development, precluding the analysis of gene function in the pupal and adult stages and its potential for mosquito control. There is a need for a simple procedure that can be used for the fast and reliable examination of adult gene function via RNAi knockdown. Here, we focus on the aquatic stages of the mosquito life cycle and suggest a quick and easy assay for screening the functional role of genes in Culex pipiens mosquitoes without using microinjections. By dehydration of early stage pupae and subsequent rehydration in highly concentrated dsRNA, we achieved a moderate knockdown of laccase 2, a gene that turns on in the pupal stage and is responsible for melanization and sclerotization of the adult cuticle.

13.
Insects ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535392

RESUMO

Culex quinquefasciatus is an important target for vector control because of its ability to transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often to organophosphates, the two most common classes of active ingredients used by public health agencies. A knockdown resistance (kdr) mutation, resulting in an amino acid change from a leucine to phenylalanine in the voltage gated sodium channel, is one mechanism contributing to the pyrethroid resistant phenotype. Enzymatic resistance has also been shown to play a very important role. Recent studies have shown strong resistance in populations even when kdr is relatively low, which indicates that factors other than kdr may be larger contributors to resistance. In this study, we examined, on a statewide scale (over 70 populations), the strength of the correlation between resistance in the CDC bottle bioassay and the kdr genotypes and allele frequencies. Spearman correlation analysis showed only moderate (-0.51) or weak (-0.29) correlation between the kdr genotype and permethrin or deltamethrin resistance, respectively. The frequency of the kdr allele was an even weaker correlate than genotype. These results indicate that assessing kdr in populations of Culex quinquefasciatus is not a good surrogate for phenotypic resistance testing.

14.
Vet Parasitol ; 328: 110172, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38547829

RESUMO

Vector-borne diseases continue to increase worldwide. Dirofilariosis is one of the most common vector-borne zoonotic diseases, mainly caused by Dirofilaria spp. (D. immitis and D. repens) and spread by culicid mosquitoes of different species. Greece is one of the countries in southern Europe where it is traditionally endemic, and its distribution is not homogeneous. The aim of this study was to develop an environmental model for Greece that reflects the suitability of the ecological niche for Dirofilaria spp. infection risk and its projection until 2080. For this purpose, we used the potential distribution of suitable habitats for Culex pipiens calculated using an ecological niche model (ENM) and the potential number of generations of Dirofilaria spp. The ecological niche model of Cx. pipiens in Greece showed good predictive power (AUC=0.897) with the parasite at a resolution of 1 km2. The variables that contributed most to the model were mean annual temperature, rivers and human footprint. The highest risk of infection was found in coastal areas and in riverside areas of the main river basins, as well as in irrigated areas of the mainland and peninsular regions and in the whole territory of island areas, and the lowest risk was found in areas of higher altitude. A positive relationship was found between the risk of dirofilariosis and the location of infected dogs, with 86.65% located in very high and high risk areas. In 2080, the percentage of territory gained by Cx. pipiens will increase by 261.52%. This model provides a high predictive value, predicted presence, and risk of Dirofilaria spp. infection and can serve as a tool for the management and control of this disease.

15.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543619

RESUMO

This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.

16.
Parasit Vectors ; 17(1): 156, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532512

RESUMO

BACKGROUND: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Microclima , Aves , Mosquitos Vetores
17.
Biology (Basel) ; 13(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534451

RESUMO

Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.

18.
Parasitol Res ; 123(3): 151, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441704

RESUMO

Culicids in Argentinean Patagonia are characterized by low species diversity and adaptation to extreme environmental conditions, yet few studies have been conducted in the region. To further assess the occurrence of Culicidae in Western Patagonia, and in particular the presence of Culex pipiens bioforms at the southernmost extent of their distribution, immature and adult specimens were collected aboveground across various land uses located in shrubland, steppe, and deciduous forest between 38.96 and 46.55°S. Mosquitoes were reported at 35 of the 105 inspected sites. Five species from the genus Culex were identified, all of which were present in the steppe and the forest, while only Cx. apicinus and members of the Cx. pipiens complex were collected in the shrubland. Within the latter, a total of 150 specimens were molecularly identified by PCR amplification of Ace-2 and CQ11 loci. The first-to-date occurrence of bioform pipiens in South America is reported, along with the first records of Cx. quinquefasciatus signatures in Patagonia. In addition, the distribution of Cx. acharistus and Cx. dolosus as south as Santa Cruz province is expanded, and the first record of Cx. eduardoi in Río Negro province is provided. Immature specimens of Cx. pipiens were conspicuous in human-made aquatic habitats (both containers and in the ground), while Cx. acharistus was more prominent in artificial containers and Cx. eduardoi was mainly in ground habitats, either natural or human-made. These findings provide valuable insights into the distribution and ecological roles of these mosquito species in a region of extreme environmental conditions.


Assuntos
Culex , Culicidae , Adulto , Humanos , Animais , América do Sul
19.
Parasit Vectors ; 17(1): 150, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519966

RESUMO

BACKGROUND: Mosquitoes (Culicidae) are vectors for most malaria parasites of the Plasmodium species and are required for Plasmodium spp. to complete their life cycle. Despite having 16 species of mosquitoes and the detection of many Plasmodium species in birds, little is known about the role of different mosquito species in the avian malaria life cycle in New Zealand. METHODS: In this study, we used nested polymerase chain reaction (PCR) and real-time PCR to determine Plasmodium spp. prevalence and diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across ten sites on the North Island of New Zealand during 2012-2014. The mosquitoes were pooled by species and location collected, and the thorax and abdomens were examined separately for Plasmodium spp. DNA. Akaike information criterion (AIC) modeling was used to test whether location, year of sampling, and mosquito species were significant predictors of minimum infection rates (MIR). RESULTS: We collected 788 unengorged mosquitoes of six species, both native and introduced. The most frequently caught mosquito species were the introduced Aedes notoscriptus and the native Culex pervigilans. Plasmodium sp DNA was detected in 37% of matched thorax and abdomen pools. When considered separately, 33% of abdomen and 23% of thorax pools tested positive by nested PCR. The MIR of the positive thorax pools from introduced mosquito species was 1.79% for Ae. notoscriptus and 0% for Cx. quinquefasciatus, while the MIR for the positive thorax pools of native mosquito species was 4.9% for Cx. pervigilans and 0% for Opifex fuscus. For the overall MIR, site and mosquito species were significant predictors of Plasmodium overall MIR. Aedes notoscriptus and Cx. pervigilans were positive for malaria DNA in the thorax samples, indicating that they may play a role as avian malaria vectors. Four different Plasmodium lineages (SYAT05, LINN1, GRW6, and a new lineage of P (Haemamoeba) sp. AENOT11) were identified in the pooled samples. CONCLUSIONS: This is the first detection of avian Plasmodium DNA extracted from thoraxes of native Culex and introduced Aedes mosquito species in New Zealand and therefore the first study providing an indication of potential vectors in this country.


Assuntos
Aedes , Anopheles , Culex , Malária Aviária , Malária , Plasmodium , Animais , Malária Aviária/parasitologia , Anopheles/genética , Nova Zelândia/epidemiologia , Mosquitos Vetores/parasitologia , Culex/genética , Plasmodium/genética , Aedes/genética , Aves/parasitologia , DNA de Protozoário/genética , DNA de Protozoário/análise
20.
Sci Rep ; 14(1): 6248, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486053

RESUMO

Mosquitoes are one of the deadliest and most hazardous animals on Earth, where they transmit several diseases that kill millions of people annually. There is an ongoing search almost everywhere in the world for more effective and contemporary ways to control mosquitoes other than pesticides. Phytochemicals are affordable, biodegradable biological agents that specialize in eliminating pests that represent a risk to public health. The effectiveness of Acacia nilotica methanol and aqueous leaf extracts against 4th instar larvae was evaluated. The results revealed that the methanol extract of A. nilotica had a noticeable influence on the mortality rate of mosquito larvae, especially at high concentrations. Not only did the mortality rate rise significantly, but the hatching of the mosquito eggs was potentially suppressed.Terpenes, fatty acids, esters, glycosides, pyrrolidine alkane, piperazine, and phenols were the most prevalent components in the methanol extract, while the aqueous extract of A. nilotica exclusively showed the presence of fatty acids. The insecticidal susceptibility tests of both aqueous and alcoholic extract of A. nilotica confirmed that the Acacia plant could serves as a secure and efficient substitute for chemical pesticides because of its promising effect on killing larvae and egg hatching delaying addition to their safety as one of the natural pesticides. Molecular docking study was performed using one of the crucial and life-controlling protein targets, fatty acid binding protein (FABP) and the most active ingredients as testing ligands to describe their binding ability. Most of the structurally related compounds to the co-crystallized ligand, OLA, like hexadecanoic acid furnished high binding affinity to the target protein with very strong and stable intermolecular hydrogen bonding and this is quite similar to OLA itself. Some other structural non-related compounds revealed extraordinarily strong binding abilities like Methoxy phenyl piperazine. Most of the binding reactivities of the majortested structures are due to high structure similarity between the positive control, OLA, and tested compounds. Such structure similarity reinforced with the binding abilities of some detected compounds in the A. nilotica extract could present a reasonable interpretation for its insecticidal activity via deactivating the FABP protein. The FABP4 enzyme inhibition activity was assessed for of both methanolic and aqueous of acacia plant extract and the inhibition results of methanol extract depicted noticeable potency if compared to orlistat, with half-maximal inhibitory concentration (IC50) of 0.681, and 0.535 µg/ml, respectively.


Assuntos
Acacia , Culex , Inseticidas , Animais , Humanos , Acacia/química , Simulação de Acoplamento Molecular , Metanol , Inseticidas/farmacologia , Inseticidas/química , Ácidos Graxos , Piperazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA